Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 2 de 2
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Mar Biotechnol (NY) ; 24(6): 1168-1175, 2022 Dec.
Статья в английский | MEDLINE | ID: covidwho-2059885

Реферат

With the overuse and misuse of antibiotics amid COVID-19 pandemic, the antimicrobial resistance, which is already a global challenge, has accelerated its pace significantly. Finding novel and potential antibiotics seems one of the probable solutions. In this work, a novel Streptomyces sp. strain EMB24 was isolated and found to be an excellent source of antimicrobials as confirmed by agar-plug assay. It showed antibacterial activity against infection-causing bacteria, namely Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. In addition, Streptomyces sp. strain EMB24 inhibited the growth methicillin-resistant Staphylococcus aureus (MRSA), tetracycline-resistant Neisseria gonorrhoeae, and ampicillin-resistant Neisseria gonorrhoeae. Furthermore, to get deep insights about the genome and biosynthetic gene clusters producing antibiotics, whole genome sequencing was done. The strain EMB24 is closely related to the Streptomyces longispororuber as revealed by phylogenetic analysis which is a potential source of antibiotics and pigments as undecylprodigiosin and metacycloprodigiosin belonging to the class prodigiosin. Naphthyridinomycin, alkylresorcinols, desferrioxamine B and E, venezuelin, aborycin, MS-271, and siamycin are potent therapeutics that shared 100% similarity with the reference strain as revealed by the online antiSMASH tool.


Тема - темы
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Streptomyces , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Phylogeny , Pandemics , Streptomyces/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli
2.
Med Drug Discov ; 10: 100089, 2021 Jun.
Статья в английский | MEDLINE | ID: covidwho-1176863

Реферат

Coronavirus disease (COVID-19) is a global pandemic. The COVID-19 outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has overloaded healthcare systems that need medication to be rapidly established, at least to minimize the incidence of COVID-19. The coinfection with other microorganisms has drastically affected human health. Due to the utmost necessity to treat the patient infected with COVID-19 earliest, poor diagnosis and misuse of antibiotics may lead the world where no more drugs are available even to treat mild infections. Besides, sanitizers and disinfectants used to help minimize widespread coronavirus infection risk also contribute to an increased risk of antimicrobial resistance. To ease the situation, zinc supplements' potentiality has been explored and found to be an effective element to boost the immune system. Zinc also prevents the entry of the virus by increasing the ciliary beat frequency. Furthermore, the limitations of current antiviral agents such as a narrow range and low bioavailability can be resolved using nanomaterials, which are considered an important therapeutic alternative for the next generation. Thus, the development of new antiviral nanoagents will significantly help tackle many potential challenges and knowledge gaps. This review paper provides profound insight into how COVID-19 and antimicrobial resistance (AMR) are interrelated and the possible implications and current strategies to fight the ongoing pandemic.

Критерии поиска